Self-assembling molecular trees containing octa-p-phenylene: from nanocrystals to nanocapsules.

نویسندگان

  • Yong-Sik Yoo
  • Jin-Ho Choi
  • Ji-Ho Song
  • Nam-Keun Oh
  • Wang-Cheol Zin
  • Soojin Park
  • Taihyun Chang
  • Myongsoo Lee
چکیده

Tree-shaped molecules consisting of octa-p-phenylene as a stem segment and oligoether dendrons as a flexible head were synthesized and characterized. The molecular tree based on a small flexible head self-assembles into a lamellar structure, whereas the molecule based on a larger headgroup self-assembles into a discrete heptameric bundle that organizes into a 3-D primitive orthorhombic supercrystals, as confirmed by X-ray scatterings and transmission electron microscopic (TEM) observations. Optical studies revealed that the absorption and emission maxima and absorption edge of the 3-D structure shift to higher energy compared to those of the lamellar structure. The molecules in dilute solution (THF/water = 1:10 v/v) were observed to self-assemble into capsule-like hollow aggregates, as confirmed by dynamic and static light scatterings, scanning electron microscopy (SEM), and TEM investigations. These results demonstrate that tree-shaped molecules are capable of packing into organized discrete nanocrystals with parallel arrangement as well as hollow nanocapsules with radial arrangement, depending on the presence of selective solvents for flexible headgroup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capsular complexes of nonpolar guests with octa amine host detected in the gas phase.

Nanocapsules, made up of the deep cavitand octa amine and several guests, were prepared in aqueous acidic solution and were found to be stable in the gas phase as detected by electrospray ionization mass spectrometry (ESI-MS). The observed gas phase host-guest complexes contained five positive charges and were associated with several acid molecules (HCl or HBr).

متن کامل

Ordered Self-Assembling of Tetrahedral Oxide Nanocrystals

Self-assembling of size, shape, and phase controlled nanocrystals into superlattices with translational and even orientational ordering is a new approach for engineering nanocrystal materials and devices. High purity tetrahedral nanocrystals of CoO, with edge lengths of 4.4 6 0.2 nm, were synthesized and separated from Co nanocrystals, using a novel magnetic field phase-selection technique. Sel...

متن کامل

Assembling a lasing hybrid material with supramolecular polymers and nanocrystals.

The combination of bottom-up and top-down processes to organize nanophases in hybrid materials is a key strategy to create functional materials. We found that oxide and sulphide nanocrystals become spontaneously dispersed in organic media during the self-assembly of nanoribbon supramolecular polymers. These nanoribbon polymers form by self-assembly of dendron rodcoil molecules, which contain th...

متن کامل

α,ω-Dithiol Oligo(phenylene vinylene)s for the Preparation of High-Quality π-Conjugated Self- Assembled Monolayers and Nanoparticle- Functionalized Electrodes

While thioacetate-terminated oligo(phenylene vinylene)s (OPVs) have been synthesized and employed in applications involving the formation of metal–molecule–metal junctions, the synthesis and application of potentially more versatile α,ω-dithiol OPVs have not previously been described. Here, a thiomethyl-precursor route to the synthesis of α,ω-dithiol OPVs is reported and their ability to form w...

متن کامل

In Situ Structural Evolution of Self-Assembled Oxide Nanocrystals

Self-assembling of organic passivated nanocrystals has attracted a lot of interest recently. In this paper, the structural evolution of tetrahedral CoO nanocrystals is studied in situ using transmission electron microscopy. The as-prepared superlattices are Na(AOT)-passivated CoO nanocrystals, packed into monolayer and multilayer arrays on an amorphous carbon film. As the specimen temperature i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 20  شماره 

صفحات  -

تاریخ انتشار 2004